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Numerical integrations in celestial mechanics often involve the repeated computa-
tion of a rotation with a constant angle. A direct evaluation of these rotations yields a
linear drift of the distance to the origin. This is due to roundoff in the representation
of the sines and cosine of the angle. In a computer, one generally gefs+ s? #1,
resulting in a mapping that is slightly contracting or expanding. In the present paper
we present a method to find pairs of representable real nurstsdc such that
c? 4 s? is as close to 1 as possible. We show that this results in a drastic decrease
of the systematic error, making it negligible, compared to the random error of other
operations. We also verify that this approach gives good results in a realistic celestial
mechanics integration. © 1998 Academic Press

Key Wordsroundoff errors; numerical integrations; rotations.

1. INTRODUCTION

In some numerical computations, a rotation around a fixed axis by a constarm amggé
be repeatedly applied. This occurs, for instance, in some long-term integrations in cele
mechanics where one must alternate between a fixed reference frame—for integrat
Keplerian motion—and a rotating frame—to account for some rotating perturbing poten
A linear drift of the square distance to the axis is then generally observed [9, 10] with
following properties:

e The rate of drift, defined as the relative change of the square distance to the axi
rotation, is of the order of the roundoff error. For instance, if the computations are mad
single precision, the relative change is of the order of'10

e For agiven value of, the rate of drift is independent of the initial conditions.

e The sign and the amplitude of the rate of drift seem to vary in quasi-random faskt
with 6.

These properties suggest a simple explanation for the drift. Let uZ ¢ad rotation axis
and (X, Y) the plane perpendicular to tleaxis. ThenZ is invariant in the rotation which
420
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FIG. 1. Roundoff errors as a function of the number of steps, in single precision. Dottedlia@rror due
to the roundoff of cog and sir for an arbitrarily chosef. Dashed line¢; = error due to other roundoffs. Full
line, e, = errors due to the roundoff of c6sand sirv for a “good rotation” (Eq. (14)). Dash—dot line; = same
for Eq. (15) withk = 32.

is simply computed by

()= @

where ideally we should have
c=cosf, s=sing. (2)

Actually, the values ot ands are rounded by the computer, and thereftfre- s? is not
exactly 1. As a consequence, the mapping (1) is slightly contracting or expanding,
systematic way since the same rounded vatumsds are used for every iteration [10].

Tolillustrate, consider a computation in single precision, with roundoff errors of the or
of 2724 (see Section 2). We assume for simplicity that each step of the computation invo
one rotation. Then aftérsteps, the cumulative error resulting from the systematic rounds
errors onc ands is e &~ 2~2%. This is shown by the dotted line in Fig. 1.

Other roundoff errors occur in the multiplications and additions involved in (1) and
other parts of the computation which have to be done at each step. However, these
errors are generally quasi-random, since different values, of, and other variables are
involved at each step. A reasonable conjecture is then that the cumulative effect ha
nature of a random walk and that the error aftsteps is of the order ef, ~ 2-24\/t. This
is represented by the dashed line in Fig. 1.

It can be seen that dominates. It is the cause of the observed linear drift.

This drift can be a problem for long-term integrations. In the case of Fig. 1, for instanc
results in a complete breakdown of the computation after oifly 20 steps. Itis therefore
desirable to remove this drift or at least to decrease its rate.

If there is some latitude in the choice @{for example, if it is determined by the choice
of an integration step), then a natural idea is to select a value for which the roundoff e
is very small. This is the topic of the present paper.



422 HENON AND PETIT

M. Hénon is responsible for the mathematical basis; J.-M. Petit, for the numerical si
lations.

2. ROUNDOFF

A real number is usually approximated on a computer bypaesentable numbef the
form

o xmx 2, 3

whereo = £1 is the signm is the mantissa, anglis the exponent.

In most cases, the number n@rmalized the exponent is chosen in such a way the
1/2<m<1; i.e, the binary representation of has the form ..... The 1 in the first
position is then dropped and the ngxt 1 binary digits are stored. Thus is of the form

1 v
m=_-+4+ —, 4
T (4)

wherev is the stored integer, which lies in the range
O<v < 2P L (5)

Most computers today adhere to the IEEE754 standard [1, 5] and &s24 for single
precision,p =53 for double precision.

We consider now the binary representatoof cost. If [cosf| =1, it is exactly repre-
sentede=1,v=0). If 1/2<|c| < 1, the exponent is=0, and the representable value:
are
Vv

o = 1/2+ ;.

(6)
wherev can take all values in the range (5). Jf4l< |c| < 1/2, the exponentis= —1, and
the representable values are

V

ol = 1/4+ g )

To simplify the study, we consider only the subset of even valuas bé. the values of
¢ which are multiples of 2P. Similarly, for 1/8 < |c| < 1/4, we consider only the repre-
sentable values with multiple of 4, and so on. In other words, in general we consider on
the representable values of the form

c=x27P, (8)
wherex is an integer satisfying
0< x| <2". )

Conversely, any suck corresponds to a value representable on the computer. W
we have done here is simply to extract from the cumbersome variable-size lattice of
resentable points a subset of fixed size. In so doing, we eliminate some solutions o
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problem; but, as will be seen, the number of remaining solutions is still large and shoul
sufficient for most applications.

The same considerations apply to &jrfor which we consider only the representabls
values of the form

s=y2", (10)
wherey is an integer satisfying

0<ly|<2P. (11)

3. SOME DIOPHANTINE EQUATIONS
In this section we derive the equations satisfieklandy for reasonable amplitudes of
the roundoff error.

1. We try first to find values of for which there is no roundoff error, i.e. such that 6os
and sirv are representable (in the restricted sense defined in the previous Section). W
thus led to seek the solutions of the diophantine equation

X2 + yz — 2%, (12)
wherep is given, and andy are unknown integers.
Unfortunately, we have [7].
THEOREM1. The only solutions af12) are (x =+2P, y=0) and (x =0, y = +2P).

We prove this recursively. Ip = 0, the theorem is obviously trug? + y?>=1, sox?=1
andy? =0, or conversely. Assume that the theorem has been proveu-dr, with p > 0,
and consider the valup. The right-hand side is even, amdandy are both even or both
odd. If they are both odd, we haweé mod 4=1, y> mod 4= 1, while 2P mod 4=0:
this is impossible. Ifx and y are both even, there is a solutish=x/2, y' =y/2, for
p’ = p— 1. According to the theorem, this solution must be of the faxfa= +-2P~1, y' = 0)
or (x' =0, y' =+2P~1), from which the theorem follows.

These four solutions correspondite= 0, /2, r, 37 /2, and are generally of no practical
interest.

2. The next best thing which we can try is to achieve an error 1. So we consider
diophantine equation

xX24y?=2%_1. (13)
As above,p is given, andk andy are unknown integers. But there is

THEOREMZ2. Equation(13) has no solutions for p- 0.

Proof. x> mod 4=0or 1 y?> mod 4= 0 or 1, while 2P — 1 mod 4= 3, which is impos-
sible.

3. So we look now for solutions of
X2 4y?=2%P 4 1. (14)

Fortunately, this equation always has solutions and, sometimes, many of them (see Tabl
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The roundoff error or? + s? is now of the order of 22P = 2748 only. The cumulative
effect ise, ~ 2748, This is represented by the full line in Fig. 1. The situation is no
inverted: the systematic error is negligible compared to the other errors for any real
number of iterations. In fact both errors become of order unity afteP*®~ 3 x 1014
steps.

4. More solutions can be obtained (in order to have more choice for the val)e aif
the price of a larger roundoff error. We look then for solutions of

x24+y?=2%P 4k (15)

This is acceptable K is not too large an integer. The systematic error dftteps becomes
€3~ 27t. If we take for instancé =32 (see Section 4), then the error, represente
by the dash—dot line in Fig. 1, is still quite acceptable; it becomes dominant only a
t =23~ 3 x 10" steps.

We give now concrete recipes for the two cases of practical interest: single and do
precision.

4. SINGLE PRECISION

Because of elementary symmetries, it is clearly sufficient to consider the ra
0<6<m/4.

We use the IEEE754 standard valyer= 24. Equation (14) has then only four solutions
in the range & 6 < /4. Clearly this is insufficient for practical needs. So we enlarc
our search and look for solutions of (15), wiltj < kmax. For instance, fokmax= 32 there
are 54 solutions in the range<® < = /4. These solutions are listed in Table I, sorted b
increasing.

This table is easily computed by scanning possible valugs which are in the range
0<y <[+ (22P + kmav) /2| = 11863283; this takes a few seconds on a workstation. |
minor technical problem is that the terms in (15) are too large for the standard inte
format. This is solved by representing these terms as double precision numbers.)

It can be seen that the valuestofover reasonably well the whole intervak® < /4.

If more solutions are desired, at the expense of accepting larger roundoff errors, a I
table can easily be built. For instancekifax= 1000 the number of solutions increase:
to 869.

A caveat is in order herdhe value of) should never be directly used in the computatiol
program The values ob listed in Table | are not exact, but rounded; they are given he
only for illustration. Additional unwanted roundoff would occur in computirends from
0, and the property (15) would be destroyed in many cases.

Instead, the values af ands should receive independent names in the program a
should be computed directly from the exact values ahdy listed in Table I, using (8) and
(10). This computation should be done carefully, in such a way that no roundoff occurs
Fortran, this can be done, for instance, with the instructions

REAL*x4 C, S
C=14842141./2. *x 24
S=7822137./2. ** 24
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TABLE
Solutions of (15) forp=24, |k| <32

T y [ k z y 0 k
16777216 0 0.0 0 15259624 | 6972722 | 42860965 4
16777216 1 | .00000006 1 15045797 | 7422868 | .45831476 | -23
16777216 2 | .00000012 4 14938544 | 7636418 | .47255862 4
16777216 3 | .00000018 9 14842141 | 7822137 | .48503090 | -6
16777216 4 | .00000024 | 16 14803424 | 7895164 | 48995756 | 16
16777216 5 | .00000030 | 25 14798175 | 7904998 | .49062199 | -27
16777214 8192 | .00048828 4 14733952 | 8024066 | 49868557 4
16776704 | 131071 | .00781252 1 14604001 | 8258216 | .51464749 1
16761016 | 737102 | .04394885 4 14582860 | 8295491 | .51720172 | 25
16760654 | 745288 | .04443725 4 14539039 | 8372056 | .52245995 1
16756796 | 827505 | .04934316 | -15 14515158 | 8413392 | .52530539 | -28
16651675 | 2048584 | .12241060 | 25 14362958 | 8670664 | .54312270 4
16566995 | 2647575 | .15847021 | -6 14188593 | 8953145 | .56290949 | 18
16564945 | 2660371 | .15924263 | 10 14067585 | 9142102 | .57628385 | -27
16532686 | 2853992 | .17094249 4 13855696 | 9460162 | .59906386 4
16423326 | 3427731 | .20575745 | -19 13851074 | 9466928 | .59955226 4
16389584 | 3585598 | .21537962 4 13849473 | 9469270 | .59972135 | -27
16332540 | 3837071 | .23074953 | -15 13775055 | 9577204 | .60753567 | -15
16039629 | 4919886 | .29762250 | -19 13684899 | 9705592 | .61688653 9
15975413 | 5124564 | .31040869 9 13421774 | 10066328 | .64350099 4
15751592 | 5776013 | .35146882 | -23 13421771 | 10066332 | .64350129 9
15554306 | 6287968 | .38417252 4 13416856 | 10072882 | .64398939 4
15519136 | 6374276 | .38972760 | 16 13322259 | 10197666 | .65332277 | -19
15486659 | 6452780 | .39479142 | 25 13012020 | 10590671 | .68316796 | -15
15398649 | 6660074 | .40821469 | 21 12988527 | 10619470 | .68538322 | -27
15359229 | 6750486 | .41409362 | -19 12927484 | 10693696 | .69111140 | 16
15263026 | 6965272 | 42812149 4 12058257 | 11665051 | .76882501 | -6

5. DOUBLE PRECISION

For the IEEE754 standard value for double precisips; 53, Eq. (14) has only eight
solutions in the range 8 6 < /4; so we must again turn to Eq. (15).

Here it is not practical to tabulate solutions of (15) by scanning gyas the range of
possible values of is of the order of 1¢. Instead, we will use some classical results of th
theory of numbers which allow a systematic generation of the solutions. We review tt
results first.

5.1. Solutions of ¥ + y?> = S; General Properties

Our problem is a particular case of a more general problem: find the solutions of
diophantine equation

X2 +y?*=S (16)
Sis a given positive integer (we disregard the trivial c8se0). This is a classical problem
with a long history [3, Chap. VI].
It will be convenient here to revert to a consideration of the wtirley) plane. We call
solutiona pair of integers andy satisfying (16). It will also be convenient to consider the
(X, y) plane as the complex plane and to introduce the complex number

z=x+Iiy = /Sé’. (17)
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Equation (16) can then be written
zz=S (18)

Note that, for a givers, a solution can be specified simply by the valué of

We callr (S) the number of solutions of (16). From any given solution one can dedLt
three other solutions (for the san® by rotations ofr/2, 7, 37 /2. In complex notation,
from any solutionz we deduce three other solutiois i2z, i3z. These four solutions are
always distinct. We will call this guadrupletof solutions.

Therefore, the number of solutions is a multiple of four, and we wti = 4h(S), where
h(S) is the number of quadruplets. For instanbé€l) =1, h(2)=1, h(3)=0, h(4) =1,
hG) =2, ....

The total number of solutions up to a maximum,

Shax

> rs. (19)

S=1

is the number of points with integer coordinates inside or on the circle of rad8ssy; it

is therefore of the order of Syax [12], and the total number of quadruplets)ish(S) ~

7T Snax/4. From this we deduce that the average number of quadruplets for a §igen
(h(S)) == /4. In practice, the solutions are unevenly distributed. For most valu&; of
there are no solutions. The number of val&es Syax for which h(S) > 0 is of the order
of [12]

Q?6422——§3@L—. (20)

Og S’nax
The probability thah(S) > 0 for a givenSis obtained by differentiating that expression:
1 1
0.7642 — . 21
Z(«/Iogs 2(log 8)3/2> (1)

For values of interest her&a 2190~ 10°°; this probability is about 0.09.
For any quadruplet generated by a solutipthere is aonjugate quadrupledf solutions
generated by the conjugate valueéAs is easily seen, there are three cases:

e zlies on one axis, i.ey=0 orx=0; 8 modx/2=0. In that case the quadruplet is
identical with its conjugate; thusgenerates only four distinct solutions. They correspon
to0 =0, /2, 7, 37/2. Sis a square in that case.

e zliesonadiagonal,i.éx|=|y|; ® modr /2= /4. Inthat case, again, the quadruple
is identical with its conjugate, armgenerates only four distinct solutions. They correspor
to0 = w/4,3r /4,57 /4, T /4. Sis twice a square in that case.

e zlies neither on one axis nor on a diagomainodr /4 £ 0. In that case the quadruplet
and its conjugate are distinct, angenerates eight distinct solutions. There is one of the
in each of the eight intervalpr/4<6 < (j + Dn/4,j=0,1,...,7.

5.2. Solutions for a Given S

The number of solutions for a given value®tan be determined as follows [4, p. 242]:
First we decomposg into prime factors. We distinguish three kinds of prime factors:
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e the factor 2,
o factorsf; equal to 1 (mod 4),
o factorsg; equal to 3 (mod 4),

and we write the decomposition 8fas
s=2x[[ =< ]]d/- (22)
j j

We have then the following.

THEOREM3. If there exists an odg, then (S) =0. If all y; are eventhen

hs) =[] + . (23)
j

Note that in the second cas#.S) is the number of divisors qr[j fjﬁ’; i.e., the number of
divisors of S made up off; factors only.

We determine now the solutions themselves.

1. We consider first the simple case where only one falGt@present and its exponent is
Bj = 1; there are no factors 2 g;. Sis then a prime number equal to 1 (mod 4). Accordin
to the above theorem, in that caseS) = 2 [4, pp. 219, 241]: there are two quadruplets o
solutions.

The solutions do not lie either on an axis or on the first diago8& ot a square, nor
twice a square). It follows that the two quadruplets are mutually conjugate.

We callz; = x; + iy; the solution with O< 6 < /4 (0 <y < X). An algorithm exists to
compute that solution for anf; [6]. The solutions for the first few factorf are given in
Table II. The two quadruplets are generatedzppndz;.

2. We consider next the case where only a fadtpis present, but with an arbitrary
exponenis;. All quadruplets are then given by

zZ= z?" Z‘f" — (24)
wherea; can take the values Q, ..., g;, andz; is read from Table Il. This produces the
required number of quadrupletgS) = 8; + 1.

TABLE Il
Solutions in the CaseS= fj

j f; Xj Yi
1 5 2 1
2 13 3 2
3 17 4 1
4 29 5 2
5 37 6 1
6 41 5 4
7 53 7 2
8 61 6 5
9 73 8 3
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EXAMPLE. S=625=5% Thenz; =2+ i, and the solutions for are:Z} = —7 — 24i;
0B =15-20; 22 =25 57, =15+ 20i; 2= 7 + 24

3. We consider now the case with more than dpgbut still no factors 2 og;. All
guadruplets are then given by

z=][7'7"". (25)
J

where; can take the values @, ..., 8. This produces a number of quadrupletS) =
]'[J- (Bj + 1), which is the required number.

EXAMPLE. S=1025=5%x 41.Thereisfi=5; 1=2;z1=2+1i; f,=41; fo=1;2,=
5+ 4i. Equation (25) gives

o o
SR WA Sl W

z=| z1z4 )= 5 5.4 ) (26)
2 2 344

where one factor should be chosen in each column. This gives the six solutlon82,
31-8i, 25— 20i, 25+ 20i, 31+ 8i, —1+ 32, corresponding to six distinct quadruplets.
The quadruplets are conjugate two by two; so there are only three fundamentally
ferent solutions. In the interval ©6 < /4, these solutions ardn terms ofx andy:
(32,1), (31, 8), (25, 20).

4. Finally, we consider the completely general case where the expenantg; in (22)
are arbitrary, and thg; are even, but otherwise arbitrary. All quadruplets are then given

z:(1+i)“Hg}”'/ZHz’j\jif“M. (27)
] i

5.3. Solutions for =22 + 1

In the double precision case, comparatively large valuek|afan be accepted in (15);
even with|k| = 10P, for instance, the roundoff error at each step will be of the order ofé10
only. Thus, many more solutions can be generated than are needed for applications. W
therefore restrict our attention to some subset of solutions. We will consider valkes of
the formk = 229 with g > 0. Consider a solutio(x, y) of (15). Thenx’ =x/29, y' = y/24
verify

X2 4y?=20"41 (28)

with n= p — g. Thus, our choice of values &fis equivalent to considering values $bf
the formS(n) = 22" + 1 withn < p.
These values have some nice properties. In particular,

e All prime factors ofS(n) are equal to 1 (mod 4). This is shown as follows: a prim
factord of 22" + 1 must be odd. Since?2is a square;-1 is a quadratic residue (mat).
It follows that(d — 1)/2 is even [11].
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TABLE IlI
Number of Quadruplets

=}

h(S) n h(S) n h(S) n h(S)

1 2 16 4 31 32 46 4

2 2 17 16 32 4 47 16

3 4 18 16 33 64 48 8

4 2 19 16 34 12 49 64

5 6 20 4 35 96 50 64

6 4 21 64 36 32 51 512

7 8 22 8 37 32 52 4

8 2 23 32 38 16 53 16

9 16 24 8 39 768 54 64

10 4 25 64 40 8 55 96

11 8 26 8 41 32 56 32

12 8 27 64 42 32 57 256

13 16 28 8 43 32 58 8

14 4 29 8 44 16 59 128

15 48 30 16 45 1536 60 64
o A prime factor of S(n) is also a prime factor 08(3n), S(5n), .. .. This is obvious
from the identitya?/*! + b?*1 = (a + b)(@? — a?~'b + a?/—2b? — ... 4 b, taking

a=2" b=1,andj=1,2,....

As aresult, the equatior? 4 y2 = S(n) = 22" 4 1 tends to have many solutions. Table I
gives the number of quadrupletgS) for n=1 to 60. This number was computed by
factoring S into prime numbers (with the help #kple) and using Eg. (23).

For machines withp =53, a particularly good value =51, for which there are nine
prime factors:

2102 1 = 1326700741 26317x 13669x 3061x 953 x 409x 137x 13x 5. (29)

Thus the total number of quadruplets B=2512. They are given by the equation
X +iy = 2—i 3-2 11— 4 20— 3i 28— 13
Y=\2+i)\3+2 J\11+4 ) \20+3 ) \28+13
y 55— 6i 113— 30 154— 51 30346— 20145 (30)
55+ Gi 113+ 30i 154+ 51 30346+ 20145 ) °

where one factor should be chosen inside each set of parentheses.
The angle is correspondingly given by

—61 ) —b
0 = . 31
<+91>+(+92>+ +<+99) .
with 6; = arctan ¥2,6, = arctan 23, . . .. Approximate values of th@ are listed in Table IV.
Here again, we point out that these values are given only to allow an estimat®oé
given combination; they should never be used in the program. Instead, the exact value:

andy should be computed from (30) for the chosen combination, and then used to com
c ands as explained in Section 4.
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TABLE IV
Values of@; for n=51

0;

0.46364761
0.58800260
0.34877100
0.14888995
0.43467022
0.10866122
0.25950046
0.31980124
0.58604567

© 00N O WDNPRP

The total number of solutions is 2048, out of which 256 lie in the intervabO< 7 /4.
The values ob cover the circle quite well; the maximal difference between two success
values is about 0.027.

Another good value ia = 45; there is

2%0 4+ 1 =29247661x 54001x 1321x 181x 109x 61 x 41x 37x 13x 5> (32)

and the total number of quadruplets f23 = 1536. This value of should be appropriate

in particular for machines witlp =48, like some CRAYs (C90/YMP). It also allows for
extra values ob for machines withp =53 with a relatively small error (see Fig. 2b anc
Fig. 3). The quadruplets are given by the equation

iy = > <3—2i>(6—i)(5—4i)<6—5i)<10—3i>
34 4i 3+ 2 64 5+ 4i 645 10+ 3i
y 10— 9i 36— 5i 199- 120 5331- 910 (33)
10+ 9i 36+ 5i 199+ 120G 5331+910 /°
The angle is correspondingly given by
—26,

—6 —b10
0 |+ ( ) +o ( ) (34)
26, +62 +610

0

with 6, = arctan ¥2,0, = arctan 23, . . .. Approximate values of thg are listed in Table V.
The total number of solutions is 6144, out of which 768 lie in the intervabO< 7 /4.
The values 0b cover the circle quite well: the maximal difference between two success

values is about 0.005.

Note that some computers, like the VAXs, use a double precision representation
p =56. However, the values &f(S) for n from 52 to 56 are rather small and the values ©
6 cover the circle rather sparsely. Note also that this method is guaranteed to work onl
computers with optimal or nearly optimal floating point arithmetic, which is not the ce
of CRAYS.
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TABLE V
Values of@; for n=45

0;

0.46364761
0.58800260
0.16514868
0.67474094
0.69473828
0.29145679
0.73281511
0.13800602
0.54263352
016907011

© 00N O WN PP

=
o

Incidentally, the mathematical approach used in the present section could also be us
the case of single precision (Section 4). But in that case a simple scanning method is
convenient.

6. NUMERICAL SIMULATIONS

We now present numerical verifications of these results. All rotations will be perforn
using the traditional mapping (1). We point out, however, that there exist other numelr
implementations of rotations with good behaviour over a large number of iterations [9]

6.1. Simple Rotation

All computations will be made in double precision on a Silicon Graphics Power Indig
computer running a MIPS R8000 processor which conforms to the IEEE754 standar
number representation. We first study the effect of a large number of iterations of
mapping (1). We compare random angles, some special angles found by chance to b
well, and the “good” angles found in the previous section.

The quality of the computation is determined by the conservation of the rélids
VXZ+ Y2 Let Ry= /X3 + Y& be the radius of the initial pointXo, Yo). As we iterate
the mapping, we record the absolute value of the relative ERFgIRZ — 1|. For each rotation
angled, the relative error is averaged over 20 initial conditions chosen at random. The v
obtained is representative of what really happens for all initial conditions, since the stan
deviation remains very small.

In a first series of runs, we scanned the rangefO< x/2 with values of the form
0 =j/512,j =110 802. These values being representable, we can reproduce the exact
value of¢ on any computer. Any other value®&tored in the computer would give an errol
in c ands of the same order of magnitude. However, it would not be easy to know the e
value of and to reproduce the results on different computers. Typical results are show
Fig. 2a, solid lines. We observe alinear drift of the square radius as expected. However,
particular angles give somewhat better results (Fig. 2a, dashed lines). For these angle
roundoff error orc? 4 s? happens to be small and for up ta*i@rations, the random errors
due to other parts of the computation are dominant. Eventually, the linear drift emerges.
particularly good angles presented here correspondtd 26 248 357, 423, and 700.
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FIG. 2. Relative square radius errors (absolute value) as a function of the number of steps: j(§12;
(b) & = j=/2000; (c) solutions of Eq. (28) with=45; (d) solutions of Eq. (28) with=51.

In a second series of tests, we used values of the foarj7/200Q j =1 to 999. For
most values of , the results are similar to those of the previous case (Fig. 2b upper curv
However, we found three values &f(j =40, 250, and 450) with a peculiar behaviour, a:
shown in Fig. 2b (lower curves). For 4@ 1@ iterations, the square radius drifts linearly.
and then it seems to lock on a particular value.

Inspection of the numerical results shows that a periodic cycle of the mapping is reac
This is made possible by the low-order commensurabiliwith 2. Indeed) = 27/100,

27 /16, and 9x 27 /80, respectively, and the observed periods are 100, 16, and 80.
Finally we tested the “good” values éfdefined by the solutions of Eq. (28), with= 45
and 51 (see Table VI). These solutions are intege?s Hence, they are representable a

double precision floating numbers on machines with a 53-bit mantissa. Simit&rgna

2% are representable, being powers of 2. So assigning the solutions of Eq. (28) to vari
and dividing them by 2 or 221 give the desired representable number. We next iterate 1
mapping. In both cases, the random drift due to the other parts of the computation domit



GOOD ROTATIONS

TABLE VI

Values ofx and y and Corresponding 6 Used
in the Numerical Tests of the Rotation

n =45
T y 0
35004143579815 3556679846300 | 0.10125988
34476730568729 7021046116972 | 0.20089880
33597753939071 10446576929072 | 0.30145465
30876883071208 16868850912031 | 0.50001828
26872087044097 22711912671104 | 0.70169266

n =51
T y 0
2240341265158844 | 226877536436263 | 0.10092511
2201219968984456 | 474587240722913 | 0.21235141
2150106539295032 | 669062232227809 | 0.30167850
1963938109574759 | 1101612228814132 | 0.51118844
1721715036961844 | 1451309661103513 | 0.70038350
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over the linear drift for longer than the 8 @erations performed here, and the overall errc
remains very small (Fig. 2c far=45 and Fig. 2d fon =51).

6.2. Integration in a Rotating Frame

We came to consider this problem through the numerical study of the long term dynat
of Dactyl, Ida’s satellite [8, 9]. This required the use of a symplectic integrator in a rotat
frame, thus involving a rotation. So we want to check the effect of combining the rotat
with the iteration of the symplectic integrator of order 2 (SI2).

The implementation of SI2 we use is the generalized leap-frog described by Yos
[13]. We write the Hamiltonian in the form

H ="Hi(L,G, H) + Ho(X, Y, 2). (35)

Here,’H; is the Hamiltonian of the two-body problem in a rotating frame, with a prima
which has the same mass as the primary of the actual problem,

12

T
L, G, andH being the Delaunay variables being the rotation speed of the rotating frame
andu being the product of the gravitational constant and the reduced mass of the two bo
H, represents the perturbation potential, namely the difference between the real pote
and the point mass potential:

Hy = oH, (36)

Ha = UperX. Y, 2) =U(X. Y. 2) + . (37)

To integrate from timé to timet + ¢, we integrate, for t/2, thenH; for r, and finally,
H, for t/2 again.

The rotation occurs in the integration #f; because of the termwH. Using the f
andg Gauss functions [2], one can integrate the keplerian Hamiltonian in a fixed fra
—u?/2L2?, over any time intervat, directly in cartesian coordinates. We must then rota
the position and velocity vectors by an angle around the rotation axis.
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Symplectic integrators are known to behave correctly in the long run; i.e., they do
exhibit linear drifts in energy. But on a short-time scale, they may have quite large oscilla
errors. The amplitude of the oscillations are many orders of magnitude larger than the li
drift over a period. We average the energy error over a large number of iterations to se
secular error rise above the oscillating error.

In Fig. 3, we present the evolution of the absolute value of the relative energy error
two different sets of angles. For each set, we either choose the time step and deriv
rotation angle from the rotation speed, or we take a “good” angle of the same orde
magnitude fom =45 orn=51. Figure 3a shows the error ovefiterations for an angle
0 =0.0753 (solid line),p ~0.07511325 (dashed line), amd~ 0.07194054 (dotted line)
(see Table VI, top lines). The energy error was averaged ovet® iterations for each
data point. For Fig. 3b, we integrated for only’liferations but with an angle about 10
times smallerd = 0.00753 (solid line)¢ ~0.00772303 (dashed line), asid~ 0.00781249
(dotted line) (see Table VII, bottom lines). For this figure, the energy error was avera
over only 10 iterations.

Clearly the use of solutions of Eqg. (28) gives very good results. We do not see
linear drift in energy. However, this technique can be used only if we are free to cho
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FIG. 3. Relative energy errors (absolute value) as a function of the number of steps: (a) “normal” ar
0 =0.0753 (solid line) and “good” angles of approximately the same amplitude fo45 (dashed line) and
n=>51 (dotted line); (b) same as (a), but for an normal angle of 0.00753 and corresponding “good” angles.
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TABLE VII
Values ofn, x, and y and Corresponding @ Used in the
Numerical Tests of the Symplectic Integrator

n z y 0
45 35085163629799 2640328077268 | 0.07511325
51 | 2245975296866668 | 161856006306841 | 0.07194054
45 35183322803560 271727410975 | 0.00772303
51 | 2251731094732799 | 17591984718848 | 0.00781249

the integration time step, as in the case of SI2. For example, symplectic integrator
order 4 (Sl4) or 6, as described in [13], require the use of different time steps in a \
precisely given relation; integrating overwith Sl4 corresponds to using SI2 with time

st

ept/(2 — 21/3), then—2%37 /(2 — 2%/3), and finallyt /(2 — 2/3) again. This cannot be

achieved with solutions of Eq. (28). For such cases, a completely different implemente
of the rotation can be used, which yields good results [9].
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